Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
ssrn; 2023.
Preprint en Inglés | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.4319535
2.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.10.19.512927

RESUMEN

A series of SARS-CoV-2 variants of concern (VOCs) have evolved in humans during the COVID-19 pandemic: Alpha, Beta, Gamma, Delta, and Omicron. Here, we used global proteomic and genomic analyses during infection to understand the molecular responses driving VOC evolution. We discovered VOC-specific differences in viral RNA and protein expression levels, including for N, Orf6, and Orf9b, and pinpointed several viral mutations responsible. An analysis of the host response to VOC infection and comprehensive interrogation of altered virus-host protein-protein interactions revealed conserved and divergent regulation of biological pathways. For example, regulation of host translation was highly conserved, consistent with suppression of VOC replication in mice using the translation inhibitor plitidepsin. Conversely, modulation of the host inflammatory response was most divergent, where we found Alpha and Beta, but not Omicron BA.1, antagonized interferon stimulated genes (ISGs), a phenotype that correlated with differing levels of Orf6. Additionally, Delta more strongly upregulated proinflammatory genes compared to other VOCs. Systematic comparison of Omicron subvariants revealed BA.5 to have evolved enhanced ISG and proinflammatory gene suppression that similarly correlated with Orf6 expression, effects not seen in BA.4 due to a mutation that disrupts the Orf6-nuclear pore interaction. Our findings describe how VOCs have evolved to fine-tune viral protein expression and protein-protein interactions to evade both innate and adaptive immune responses, offering a likely explanation for increased transmission in humans.


Asunto(s)
Infecciones , COVID-19
3.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.09.23.509261

RESUMEN

Bats have evolved features unique amongst mammals, including flight, laryngeal echolocation, and certain species have been shown to have a unique immune response that may enable them to tolerate viruses such as SARS-CoVs, MERS-CoVs, Nipah, and Marburg viruses. Robust cellular models have yet to be developed for bats, hindering our ability to further understand their special biology and handling of viral pathogens. To establish bats as new model study species, we generated induced pluripotent stem cells (iPSCs) from a wild greater horseshoe bat ( Rhinolophus ferrumequinum ) using a modified Yamanaka protocol. Rhinolophids are amongst the longest living bat species and are asymptomatic carriers of coronaviruses, including one of the viruses most closely related to SARS-CoV-2. Bat induced pluripotent stem (BiPS) cells were stable in culture, readily differentiated into all three germ layers, and formed complex embryoid bodies, including organoids. The BiPS cells were found to have a core pluripotency gene expression program similar to that of other species, but it also resembled that of cells attacked by viruses. The BiPS cells produced a rich set of diverse endogenized viral sequences and in particular retroviruses. We further validated our protocol by developing iPS cells from an evolutionary distant bat species Myotis myotis (greater mouse-eared bat) non-lethally sampled in the wild, which exhibited similar attributes to the greater horseshoe bat iPS cells, suggesting that this unique pluripotent state evolved in the ancestral bat lineage. Although previous studies have suggested that bats have developed powerful strategies to tame their inflammatory response, our results argue that they have also evolved mechanisms to accommodate a substantial load of endogenous viral sequences and suggest that the natural history of bats and viruses is more profoundly intertwined than previously thought. Further study of bat iPS cells and their differentiated progeny should advance our understanding of the role bats play as virus hosts, provide a novel method of disease surveillance, and enable the functional studies required to ascertain the molecular basis of bats’ unique traits.

4.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.01.17.476685

RESUMEN

Variants of SARS-CoV-2 have become a major public health concern due to increased transmissibility, and escape from natural immunity, vaccine protection, and monoclonal antibody therapeutics. The highly transmissible Omicron variant has up to 32 mutations within the spike protein, many more than previous variants, heightening these concerns of immune escape. There are now multiple antiviral therapeutics that have received approval for emergency use by the FDA and target both the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and the main protease (Mpro), which have accumulated fewer mutations in known SARS-CoV-2 variants. Here we test nirmatrelvir (PF-07321332), and other clinically relevant SARS-CoV-2 antivirals, against a panel of SARS-CoV-2 variants, including the novel Omicron variant, in live-virus antiviral assays. We confirm that nirmatrelvir and other clinically relevant antivirals all maintain activity against all variants tested, including Omicron.

5.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.05.25.21257505

RESUMEN

Plitidepsin is a marine-derived cyclic-peptide that inhibits SARS-CoV-2 replication at low nanomolar concentrations by the targeting of host protein eEF1A (eukaryotic translation-elongation-factor-1A). We evaluated a model of intervention with plitidepsin in hospitalized COVID-19 adult patients where three doses were assessed (1.5, 2 and 2.5 mg/day for 3 days, as a 90-minute intravenous infusion) in 45 patients (15 per dose-cohort). Treatment was well tolerated, with only two Grade 3 treatment-related adverse events observed (hypersensitivity and diarrhea). The discharge rates by Days 8 and 15 were 56.8% and 81.8%, respectively, with data sustaining dose-effect. A mean 4.2 log10 viral load reduction was attained by Day 15. Improvement in inflammation markers was also noted in a seemingly dose-dependent manner. These results suggest that plitidepsin impacts the outcome of patients with COVID-19.


Asunto(s)
Hipersensibilidad a las Drogas , COVID-19 , Inflamación , Diarrea
6.
researchsquare; 2021.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-333578.v1

RESUMEN

The novel SARS-CoV-2 virus emerged in December 2019 and has few effective treatments. We applied a computational drug repositioning pipeline to SARS-CoV-2 differential gene expression signatures derived from publicly available data. We utilized three independent published studies to acquire or generate lists of differentially expressed genes between control and SARS-CoV-2-infected samples. Using a rank-based pattern matching strategy based on the Kolmogorov-Smirnov Statistic, the signatures were queried against drug profiles from Connectivity Map (CMap). We validated sixteen of our top predicted hits in live SARS-CoV-2 antiviral assays in either Calu-3 or 293T-ACE2 cells. Validation experiments in human cell lines showed that 11 of the 16 compounds tested to date (including clofazimine, haloperidol and others) had measurable antiviral activity against SARS-CoV-2. These initial results are encouraging as we continue to work towards a further analysis of these predicted drugs as potential therapeutics for the treatment of COVID-19.


Asunto(s)
COVID-19
7.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.01.24.427991

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths worldwide and massive societal and economic burden. Recently, a new variant of SARS-CoV-2, known as B.1.1.7, was first detected in the United Kingdom and is spreading in several other countries, heightening public health concern and raising questions as to the resulting effectiveness of vaccines and therapeutic interventions. We and others previously identified host-directed therapies with antiviral efficacy against SARS-CoV-2 infection. Less prone to the development of therapy resistance, host-directed drugs represent promising therapeutic options to combat emerging viral variants as host genes possess a lower propensity to mutate compared to viral genes. Here, in the first study of the full-length B.1.1.7 variant virus, we find two host-directed drugs, plitidepsin (aplidin; inhibits translation elongation factor eEF1A) and ralimetinib (inhibits p38 MAP kinase cascade), as well as remdesivir, to possess similar antiviral activity against both the early-lineage SARS-CoV-2 and the B.1.1.7 variant, evaluated in both human gastrointestinal and lung epithelial cell lines. We find that plitidepsin is over an order of magnitude more potent than remdesivir against both viruses. These results highlight the importance of continued development of host-directed therapeutics to combat current and future coronavirus variant outbreaks.


Asunto(s)
Infecciones por Coronavirus , COVID-19
8.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.12.13.422511

RESUMEN

Effective control of COVID-19 requires antivirals directed against SARS-CoV-2 virus. Here we assess ten available HCV protease inhibitor drugs as potential SARS-CoV-2 antivirals. There is a striking structural similarity of the substrate binding clefts of SARS- CoV-2 Mpro and HCV NS3/4A proteases, and virtual docking experiments show that all ten HCV drugs can potentially bind into the Mpro binding cleft. Seven of these HCV drugs inhibit SARS-CoV-2 Mpro protease activity, while four dock well into the PLpro substrate binding cleft and inhibit PLpro protease activity. These same seven HCV drugs inhibit SARS-CoV-2 virus replication in Vero and/or human cells, demonstrating that HCV drugs that inhibit Mpro, or both Mpro and PLpro, suppress virus replication. Two HCV drugs, simeprevir and grazoprevir synergize with the viral polymerase inhibitor remdesivir to inhibit virus replication, thereby increasing remdesivir inhibitory activity as much as 10-fold. HighlightsO_LISeveral HCV protease inhibitors are predicted to inhibit SARS-CoV-2 Mpro and PLpro. C_LIO_LISeven HCV drugs inhibit Mpro enzyme activity, four HCV drugs inhibit PLpro. C_LIO_LISeven HCV drugs inhibit SARS-CoV-2 replication in Vero and/or human cells. C_LIO_LIHCV drugs simeprevir and grazoprevir synergize with remdesivir to inhibit SARS- CoV-2. C_LI eTOC blurbBafna, White and colleagues report that several available hepatitis C virus drugs inhibit the SARS-CoV-2 Mpro and/or PLpro proteases and SARS-CoV-2 replication in cell culture. Two drugs, simeprevir and grazoprevir, synergize with the viral polymerase inhibitor remdesivir to inhibit virus replication, increasing remdesivir antiviral activity as much as 10-fold. O_FIG O_LINKSMALLFIG WIDTH=185 HEIGHT=200 SRC="FIGDIR/small/422511v1_ufig1.gif" ALT="Figure 1"> View larger version (35K): org.highwire.dtl.DTLVardef@1c12181org.highwire.dtl.DTLVardef@7ed993org.highwire.dtl.DTLVardef@1fe56aaorg.highwire.dtl.DTLVardef@ebc34e_HPS_FORMAT_FIGEXP M_FIG C_FIG


Asunto(s)
COVID-19
9.
ssrn; 2020.
Preprint en Inglés | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3742249

RESUMEN

Effective control of COVID-19 requires antivirals directed against SARS-CoV-2 virus. Here we assess ten available HCV protease inhibitor drugs as potential SARS-CoV-2 antivirals. There is a striking structural similarity of the substrate binding clefts of SARS-CoV-2 Mpro and HCV NS3/4A proteases, and virtual docking experiments show that all ten HCV drugs can potentially bind into the Mpro binding cleft. Seven of these HCV drugs inhibit SARS-CoV-2 Mpro protease activity, while four dock well into the PLpro substrate binding cleft and inhibit PLpro protease activity. These same seven HCV drugs inhibit SARS-CoV-2 virus replication in Vero and/or human cells, demonstrating that HCV drugs that inhibit Mpro, or both Mpro and PLpro, suppress virus replication. Two HCV drugs, simeprevir and grazoprevir synergize with the viral polymerase inhibitor remdesivir to inhibit virus replication, thereby increasing remdesivir inhibitory activity as much as 10-fold.Funding: This research was supported by grants from the National Institutes of Health (R01-GM120574 to GTM) and RPI Center for Computational Innovations (to KB and GTM). This research was also partly funded by CRIP (Center for Research for Influenza Pathogenesis), a NIAID supported Center of Excellence for Influenza Research and Surveillance (CEIRS, contract #,HHSN272201400008C), by DARPA grant HR0011-19-2-0020, by supplements to NIAID grant U19AI142733 U19AI135972 and DoD grant W81XWH-20-1-0270, and by the generous support of the JPB Foundation, the Open Philanthropy Project (research grant 2020-215611 (5384)), and anonymous donors to AG-S.Conflict of Interest: A provisional patent application related to these, studies has been filed. GTM is a founder of Nexomics Biosciences, Inc. This, relationship has no conflict of interest with respect to this study. GTM and RMK are inventors in patents owned jointly by Rutgers University and the University of Texas at Austin concerning the use of specific compounds as antivirals against influenza virus. These patents have no conflict of interest for this study. AG-S is inventor in patents and patent application owned by the Icahn School of Medicine concerning the use of specific antiviral compounds. This inventorship has no conflict of interest with respect to this study.


Asunto(s)
COVID-19 , Hepatitis C
10.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.10.23.352666

RESUMEN

The novel SARS-CoV-2 virus emerged in December 2019 and has few effective treatments. We applied a computational drug repositioning pipeline to SARS-CoV-2 differential gene expression signatures derived from publicly available data. We utilized three independent published studies to acquire or generate lists of differentially expressed genes between control and SARS-CoV-2-infected samples. Using a rank-based pattern matching strategy based on the Kolmogorov-Smirnov Statistic, the signatures were queried against drug profiles from Connectivity Map (CMap). We validated sixteen of our top predicted hits in live SARS-CoV-2 antiviral assays in either Calu-3 or 293T-ACE2 cells. Validation experiments in human cell lines showed that 11 of the 16 compounds tested to date (including clofazimine, haloperidol and others) had measurable antiviral activity against SARS-CoV-2. These initial results are encouraging as we continue to work towards a further analysis of these predicted drugs as potential therapeutics for the treatment of COVID-19.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA